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We estimate a wildfire risk model with a new measure of wildfire output, intensity-weighted risk and use

it in Monte Carlo simulations to estimate welfare changes from alternative prescribed burning policies.

Using Volusia County, Florida as a case study, an annual prescribed burning rate of 13% of all forest

lands maximizes net welfare; ignoring the effects on wildfire intensity may underestimate optimal rates

of prescribed burning. Our estimated supply function for prescribed fire services is inelastic, suggesting

that increasing contract prescribed fire services on public lands may produce rapidly escalating costs

for private landowners and unintended distributional and “leakage” effects.
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Expenditures to prevent, control, and suppress
wildfire in the United States have been ex-
panding rapidly (Mutch 2002). For example,
fire suppression expenditures by the USDA
Forest Service rose from $160 million in 1977
to $760 million in 2005, when adjusted to 2003
dollars. Increases in wildfire costs have been
attributed to: (1) increased wildfire severity
and extent, caused by changes in weather and
climate patterns; (2) aggressive wildfire sup-
pression,1 resulting in fuel buildups in fire-
prone landscapes; and (3) greater expendi-
tures to protect a growing wildland–urban
interface from wildfire (Aplet and Wilmer
2003; The White House 2002; USDA Forest
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1 Suppression is defined as “all the work of extinguishing or con-
fining a fire beginning with its discovery”; presuppression refers to
“activities in advance of fire occurrence to ensure effective sup-
pression . . . [which] includes planning the organization, recruiting
and training, procuring equipment and supplies, maintaining fire
equipment and fire control improvements”; and fuels management
is defined as the “practice of controlling flammability and reducing
resistance to control of wildland fuels through mechanical, chem-
ical, biological, or manual means, or by fire, in support of land
management objectives” (National Wildfire Coordinating Group
1996).

Service 2000, 2004). One of the more contro-
versial means of reducing wildfire damages,
as outlined in the Federal Wildland Fire Pol-
icy of 1995 (USDI/USDA 1995) and the Pres-
ident’s 2002 Healthy Forests Initiative (The
White House 2002), is to reduce wildland fu-
els through prescribed fire. Although many
wildland policy makers and resource man-
agers strongly resisted the use of prescribed
fire throughout much of the twentieth century
(Yoder et al. 2003), prescribed fire has more re-
cently been promoted to mitigate the impacts
of increased fuel loads on wildfire probabil-
ity and intensity (Bell et al. 1995; Haines and
Cleaves 1999; Hesseln 2000).

While some research supports the efficacy
of prescribed fire for reducing wildfire risk
(Brose and Wade 2002; Davis and Cooper
1963; Hesseln 2000; Koehler 1992–93; Martin
1988; Stephens 1997; Wagle and Eakle 1979),
scant research addresses the economics of pre-
scribed fire programs or the tradeoffs between
prescribed fire, suppression, and wildfire costs
(Hesseln 2000). Most economic research has
focused on understanding the financial costs
of prescribed burning (González-Cabán and
McKetta 1986; Rideout and Omi 1995).

One unanswered economic question is
whether fuels management efforts result in
net economic benefits. Previous analyses of
prescribed fire have found that site-specific
and short-term net benefits may be positive
(e.g., González-Cabán and McKetta 1986).
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However, little work has evaluated whether
this holds true at the broader spatial and tem-
poral scales relevant to regional and national
policies. Prestemon et al. (2002) were the first
to empirically estimate broad-scale wildfire
production functions (including fuels manage-
ment treatments as predictors) and quantify
the degree of stochasticity present in wildfire
production in Florida. However, their measure
of wildfire output, area burn probability, did
not include a direct measure of wildfire dam-
ages, nor did they evaluate economic tradeoffs
between fuels management and wildfire.

Our research advances and expands
Prestemon et al.’s (2002) wildfire risk analysis
in several ways. First, we estimate a statistical
wildfire damage risk model whose dependent
variable, fireline intensity-weighted area
burned divided by forest area, is more directly
linked to economic damages from wildfire.2

This linkage allows us to detect a statistically
significant and theoretically consistent effect
of prescribed fire on observed wildfire dam-
ages across a broad spatial scale. The linkage
also reveals the potential shortcoming of
relying on area burned to predict economic
damages. Second, our analysis includes the
effect of the randomness of wildfire and
uncertainties inherent in the relationships
between prescribed fire and wildfire and be-
tween climate and wildfire. Third, our analysis
is long-run, measuring the long-run economic
consequences of alternative prescribed fire
policies in the context of a range of possible
climate scenarios. Thus, we demonstrate how
uncertainties can be included in a long-run
analysis of fuels management actions evalu-
ated at a policy relevant spatial and temporal
scale.

Our model of economic tradeoffs is applied
specifically to estimate the economically best
amount of prescribed fire to apply in Volusia
County, Florida. The simulation model uses
the estimated wildfire production models, an
estimate of a model of prescribed fire ser-
vices supply, information about the patterns
of fire-related climate processes (ocean tem-
peratures), and information from the pub-
lished literature on prices of wildfire output
and prescribed fire inputs to simulate the net

2 Fireline intensity, the rate of heat energy released per unit time
per unit length of fire front, is the product of available fuel energy
and the fire’s rate of advance. Because it correlates well with crown
damage, lethal scorch height, and expected temperature above sur-
face fires, fireline intensity is one of the best predictors of the effects
of fire on forests and the damages associated with fires (Kennard
2004).

economic outcomes from wildfire over a 100-
year future. Stochastic dominance (Hadar and
Russell 1969) is used to compare the dis-
counted net present values resulting from a
range of prescribed burn policies. Compari-
son of the expected values from current and
simulated policies provides a measure of how
publicly optimal behavior may differ from pri-
vately optimal behavior.

Prescribed burning is widely conducted on
private lands in the Southern United States,
particularly in Florida (Wade and Lunsford
1988). With almost a half million acres of forest
treated annually (table 1), Florida has one of
the most active prescribed burning programs
in the nation (Florida Department of Agricul-
ture and Consumer Services 2005). Prescribed
burning on private forestlands often addresses
a diversity of objectives, including reducing
wildfire risk, preparing sites for tree regen-
eration, controlling disease and tree compe-
tition, disposing of logging debris, improving
wildlife habitat, improving understory forage
for grazing, enhancing aesthetics, perpetuat-
ing fire-dependent species, and managing en-
dangered species (Wade and Lunsford 1988).
However, wildfire risk reduction is frequently
cited as an important objective. In the absence
of subsidies or mandatory prescribed burn-
ing laws, we assume that those who prescribe
burn believe that the private benefits of such
burnings exceed their private costs. However,
because prescribed fire also affects public val-
ues, privately optimal behavior may not match
publicly optimal behavior. For example, the ef-
fects of smoke on air quality extend far be-
yond the burned area. Also, because wildfires
and escaped prescribed fires often cross prop-
erty boundaries, private behavior can affect
the wildfire risks experienced by others (Yoder
et al. 2003). Identifying gaps between the sum
of private actions and optimal levels for society
is key to enhanced policy making.

We do not analyze the mechanics of pri-
vate decision making over how much pre-
scribed fire to apply to an individual forest
stand. Instead, we adjust prescribed burning
for an entire region to maximize the sum of dis-
counted expected producer and consumer sur-
plus (Samuelson 1954, 1955) associated with
future wildfire. As such, this analysis repre-
sents an initial step in responding to Hesseln’s
(2000) call for economics research to define
and characterize wildfire production functions
and to use these production functions to eval-
uate the returns to alternative wildfire risk re-
duction strategies.
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Table 1. Summary Statistics of Wildfires and Prescribed Burning in Florida and Volusia County,
1994–2001

Prescribed
Wildfire Burn

Intensity- Acres Pulpwood
Wildfire Wildfire Weighted Prescribed (% of Total Harvest

Fire Forests Area Areal Area Burn Forest (m3 per
Year (Acres) (Acres) Risk (kW-Acres/m) Acres Area) Acre)

Volusia County, Florida
1994 313,035 1,318 0.42 2,181,228 9,696 3.10 20.58
1995 313,035 3,038 0.97 13,700,000 9,385 3.00 32.11
1996 313,035 1,284 0.41 2,043,996 33,511 10.71 31.74
1997 313,035 878 0.28 4,048,271 9,590 3.06 30.99
1998 313,035 157,006 50.15 681,000,000 6,760 2.16 26.18
1999 313,035 1,712 0.54 10,000,000 6,713 2.14 28.82
2000 313,035 1,657 0.53 21,600,000 15,625 4.99 19.78
2001 313,035 303 0.09 1,436,865 n/a n/a 17.79

Total 1994–2001 – 167,199 53.41 736,010,360 91,283 – –
Average 1994–2001 313,035 20,899 6.68 92,001,295 13,040 4.17 26.00
Average 1987–2001 313,035 12,126 3.87 53,600,000 n/a n/a n/a

All Counties in Florida
1994 11,846,599 31,903 0.27 126,609,063 501,331 4.23 27.01
1995 11,846,599 19,989 0.17 57,112,614 593,443 5.01 26.58
1996 11,846,599 33,710 0.28 115,207,246 527,154 4.45 29.76
1997 11,846,599 47,124 0.40 193,903,395 602,146 5.08 27.97
1998 11,846,599 429,427 3.62 2,301,048,181 453,359 3.83 28.01
1999 11,846,599 59,359 0.50 277,267,446 667,307 5.63 28.92
2000 12,112,181 108,227 0.89 572,711,949 307,408 2.54 25.45
2001 12,535,308 94,309 0.75 530,586,429 235,497 1.88 25.46

Total 1994–2001 – 824,053 6.89 4.17E+09 3,887,644 – –
Average 1994–2001 11,965,885 103,793 0.86 524,815,379 485,955 4.06 27.39

Methods

Economic analyses of wildfire management
policy have been based primarily on two mod-
els: Least Cost plus Loss (LC + L) and
Cost plus Net Value Change (C + NVC)
minimization (Bellinger, Kaiser, and Harri-
son 1983; Davis 1965; Gamache 1969; Gorte
and Gorte 1979; Headly 1916; Lovejoy 1916;
Mills and Bratten 1982; Sparhawk 1925; Teeter
and Dyer 1986). More recent analyses have
framed the problem as either maximizing
profit given prices, or minimizing the sum
of the net value change from wildfire plus
the costs of suppression and presuppression
(Donovan and Rideout 2003; Rideout and
Omi 1990). Because fires affect fuel levels by
consuming and fragmenting flammable vege-
tation, the effects of wildfire and fuels man-
agement (e.g., prescribed fire) are expected to
operate across a range of temporal and spa-
tial scales (Prestemon et al. 2002). Prestemon
et al. (2002) was unusual in its explicit exam-
ination of the dynamics of wildfire for large

spatial units, that is, wildfire in period t can af-
fect wildfire in subsequent periods on the same
spatial unit.

Determining the publicly optimal amount of
prescribed burning usually requires stochas-
tic, dynamic optimization. To find the optimal
annual acreage of prescribed fire for wildfire
risk reduction, an analyst would maximize the
sum of expected current and future net present
value of welfare:

max
xt

A= E

{
VWt − v(x)′xt

+
T∑

m=t+1

e−ri (VWi − v(x)′xm)

}
,

and Wt =W (Zt, Wt−j, xt−k)

+ εt, xt ≥ 0 (∀t)

(1)

where A is the maximization criterion (a wel-
fare measure), V is the net value change per
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unit area of wildfire, which can take on either
negative or positive values, Wt is area burned
by wildfire for the spatial unit of observation
in year t, v is a vector of the prices per unit
area of suppression, presuppression, and fuels
management inputs,3 x = (x1, x2, . . . , xT) is a
matrix describing the amounts of suppression,
presuppression, and fuels management inputs
applied annually for year 1 through T (the
planning horizon), Zt contains exogenous in-
puts to wildfire production including stochas-
tic climate variables, Wt−j is a vector of j lags
of wildfire area burned, and r is the discount
rate.

Solving this optimization problem produces
a T-dimensional matrix of optimal input quan-
tities and a T × 1 vector of wildfire quantities
over time. The uncertainty associated with ran-
dom events (e.g., weather prediction errors)
means that W(·) is the predicted amount of
wildfire in any year t and is made with er-
ror, complicating the solution process. In the
presence of such error and with risk-averse
decision makers, simulation techniques may
be used to identify the amounts of prescribed
burning most likely to maximize the welfare
criterion and stochastically dominate (Hadar
and Russell 1969) other levels of prescribed
burning.

Optimization models, such as equation (1),
may involve as many choice variables as peri-
ods in the simulation, making them difficult to
solve. Alternatively, one can identify the pol-
icy that yields the highest expected net welfare
from the set of all possible stationary policies
and that is consistent with any utility function
that demonstrates nonincreasing marginal util-
ity. Stationarity means that the quantities in
the vector x in equation (1) are constant (i.e.,
x1 = x2 = · · · = xT). We use this more tractable
analysis.

We simulate empirically derived cumula-
tive value functions for wildfire under various
prescribed burning regimes and use stochas-
tic dominance analysis to evaluate alterna-
tive stationary policies for annual prescribed
fire. Using the model described by equation
(1), we generate distributions of the wel-
fare criterion, A, for alternative levels of
prescribed fire, xi. Then, we compare the dis-
tributions for each prescribed burn policy un-

3 The “price” to the economy would be the net welfare change
arising from the diversion of resources to fuels management and
away from other economically productive activities in the econ-
omy. In other words, this is the opportunity cost of foregone uses
of these resources in the economy.

der first-degree (FSD), second-degree (SSD),
and third-degree (TSD) stochastic dominance.
FSD obtains if and only if G(xi) ≤ F(xi) for all
xi contained in X (Hadar and Russell 1969).
When probability distributions cross (i.e., FSD
does not hold) SSD is applied. Under SSD, if
the area under one cumulative distribution G
is always less than or equal to the area under
another cumulative distribution F, then G has
SSD over F, that is, when (Hadar and Russell
1969)

∫ x

x1

G(y) dy ≤
∫ x

x1

F(y) dy for all x ∈ I

(2)

where I = x1 − xn, and xn is the largest value
taken by the random variable.

If FSD holds, then SSD automatically holds,
as does TSD. If neither SSD nor FSD hold,
third-degree stochastic dominance, TSD, is
used to compare the value of the entire cumu-
lative distribution (e.g., Levy and Kroll 1979).
The cumulative distribution, G, has TSD over
F if

∫ x

x1

∫ t

0

[G(y) − F(y)] dy dt ≥ 0 for all

x ∈ I and

∫ 1

0

[G(t) − F(t)] dt ≥ 0.

(3)

In equation (3), TSD occurs only if the first
condition holds with inequality for at least one
value of x. Note that if FSD or SSD holds, then
TSD also automatically holds.

Wildfire Production Functions

The first step in the optimization process is
to estimate the wildfire production function,
W(Zt, Wt−j, xt−k) in equation (1). We estimate
two double-(natural) log wildfire production
functions using an annual time series (1994 to
2001) of wildfire for a cross-section of 48 coun-
ties in Florida. The dependent variable in the
areal risk model is the ratio of forest wildfire
area burned in county i in year t to total forest
area in county i. The corresponding dependent
variable for the wildfire intensity-weighted risk
model is the sum of wildfire area burned in year
t in county i in each fireline intensity class times
their intensities, divided by the total forest area
in county i.
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The form of our empirical model is

ln

(
Wi,t

Fi

)
= ai di +

J∑
j=1

b j ln

(
Wi,t− j

Fi

)

+
K∑

k=0

ck ln

(
Bi,t−k

Fi

)

+
M∑

m=1

fm ln

(
Pi,t−m

Fi

)

+ g1 Et + g2 E1998 + hGt

+ k ln Hi,t + �i,t .

(4)

As shown, the dependent variable in equa-
tion (4), Wi,t, is either wildfire area burned
(in acres) or intensity-weighted area burned
(
∑

(acres) × (kW/m)) in county i in year t,
while in the lagged position, Wi,t−j is the lag
j of (strictly) wildfire area burned (in acres)
in county i. Fi is the area of forest (acres)
in the county; the di’s are county dummies;
Bi,t−k is lag k of the area of prescribed burning
(in acres); Pi,t−m is lag m of the volume (in
million cubic feet) of pulpwood removed from
forests of county i; Et is the Niño-3 sea surface
temperature (Niño-3 SST) anomaly in degrees
centigrade, which predicts wildfire through its
influence on precipitation and drought
(Barnett and Brenner 1992; Brenner 1991;
Westerling et al. 2002); E1998 is a dummy
variable for the year 1998 to account for the
unusual Niño-3 SST anomaly in 19984; Gt is
the sea surface temperature anomaly for the
North Atlantic Oscillation (NAO); Hi,t is the
housing stock (a proxy for the wildland–urban
interface) in county i in year t; and �i,t is a
randomly distributed error term; ln is the
natural logarithm operator.

The fixed effects, time series cross-sectional
modeling framework in equation (4) implies
that the relationships between the dependent
and independent variables vary across coun-
ties only by a proportional factor. In log–log
space this is captured by a vector of intercept-
shifting constants. Also contained in this vec-
tor of intercepts is the proportional (constant)
effect of fire suppression on the dependent
variable. The intercept-shifting vector in this
model allows endemic or average levels of
wildfire to vary across counties such as might

4 The 1998 value of the temperature anomaly was modeled as
a separate variable because 1998 marked the end of a “super” El
Niño. The magnitude of the cycle of the “super” El Niño had not
previously been observed.

result from spatially varying but temporally
static ecological, land management, and land
use factors. Equation (4) is not explicitly spa-
tial although the cross-sectional units used in
its empirical estimation are spatially arranged.
Statistical tests for underlying spatially auto-
correlated wildfire production models are dis-
cussed in the Results and Discussion section.

Seemingly unrelated regression (SUR)
methods were used to simultaneously estimate
generalized least squares (GLS) areal risk
and intensity-weighted risk models of equa-
tion (4). This approach provides information
on cross-equation error and parameter corre-
lations needed in the simulation (see below).
We also estimated parsimonious versions of
the areal wildfire risk and intensity-weighted
risk models for the simulation analyses by
dropping all variables statistically significant at
20% or larger in two estimation iterations. This
yielded the final, parsimonious equation esti-
mates reported in the Results section.

Simulation Models and Prices

Parsimonious forms of the fire areal risk and
intensity-weighted risk models (equation 4) es-
timated with SUR-GLS were used as inputs for
Monte Carlo simulations of the effects of vary-
ing prescribed fire policies (annual acreage
prescribed burned) on wildfire outcomes. Sim-
ulated fire outcomes were generated annually
from 2002 to 2101 and for annual prescribed
fire ranging from 5,000 to 60,000 acres in in-
crements of 1,000 or 5,000 acres. This range
of prescribed fire corresponds to 1.6% to 33%
of the forested landscape in Volusia County.
The period of 100 years was simulated 50,000
times for each level of prescribed fire. The eco-
nomic impacts of wildfire outcomes were sum-
marized by discounting the sum of quasi-net
welfare (QNW) associated with different pre-
scribed fire policies.

Simulations accounted for three sources
of uncertainty: (1) parameter uncertainty, in-
corporating multivariate-normally distributed
random errors about model parameter es-
timates; (2) random errors in wildfire out-
comes, bivariate-normally distributed about
zero, with variances and covariances derived
from the jointly estimated areal risk and
intensity-weighted risk equations; and (3) cli-
mate variation in the form of the El Niño-
Southern Oscillation measure (Niño-3 SST
anomaly, variable Et) and the North Atlantic
Oscillation (NAO, At), as described by histor-
ical data.
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We used Krinsky and Robb (1986) tech-
niques to capture cross-equation parameter
and error correlations resulting from the use
of lags of areal risk as inputs (regressors) in
the intensity-weighted risk model when gen-
erating random sets of parameters and equa-
tion errors for each Monte Carlo simulation.
Specifically: let B̂ be a 1 × (K1 + K2) vector of
K1 parameters from the areal risk model and
the K2 parameters from the intensity-weighted
risk model, estimated in a simultaneous system
of seemingly unrelated, fixed effects equations.
The (K1 + K2) × (K1 + K2) covariance ma-

trix of these parameter estimates is Cov(B̂).
Given a 1 × (K1 + K2) standard normal vari-
ate, QB, a simulated set of parameter estimates
for each iteration of the Monte Carlo is cal-

culated as
ˆ̂B = Q B × Cholesky[Cov(B̂)] + B̂,

where Cholesky[Cov(B̂)] is the (K1 + K2) ×
(K1 + K2) Cholesky decomposition of the co-
variance matrix of parameter estimates. Simu-
lations based on the areal risk model involved
only the K1 × K1 submatrix of Cov(B̂)and re-
quired a 1 × K1 normal variate to generate
random parameter values. The sum of the con-
stant and fixed effect dummies was calibrated
so that the prediction errors (observed mi-
nus predicted natural logarithms of areal risk
and/or intensity-weighted risk) for 1994–2001
summed to zero for each simulated set of pa-
rameter estimates.

Random equation errors for every year in
each 100-year Monte Carlo simulation were
produced similarly to random parameter er-
ror generation. Let s1 be the standard error
of the regression of the areal risk model, s2

be the standard error of the regression of the
intensity-weighted risk model, Cov(s1, s2) be
the 2 × 2 cross-equation regression error co-
variance matrix, Cholesky[Cov(s1, s2)] be the
2 × 2 Cholesky decomposition of this cross-
equation regression error covariance matrix,
and Qe,t be a 1 × 2 standard normal variate
generated for each year t of a 100-year sim-
ulated future. A pair of random equation er-
rors for each year of a 100-year simulated fu-
ture, ŝt = [ŝ1,t , ŝ2,t ], is produced by ŝt = Qe,t ×
Cholesky[Cov(s1,t , s2,t )].

Random Niño-3 SST anomaly values for
each year of the 100-year simulated future
were created by sampling randomly from both
historical proxy and actual data. The proxy
record ran from 1864 to 1949 (Woodruff et al.
1987), while actual data ran from 1950–1999
(National Oceanic and Atmospheric Adminis-
tration 2003a). The North Atlantic Oscillation

(NAO) was simulated by adding normally dis-
tributed random errors to its historical 50-year
(1950–1999) annual mean observed value; the
variance of that univariate distribution was
taken to be the 50-year sample variance (Na-
tional Oceanic and Atmospheric Administra-
tion 2003b).

The ranked 50,000 Monte Carlo simulated
values of the discounted welfare change minus
prescribed fire cost distributions were used to
assess stochastic dominance. Note that because
the wildfire “price per acre” was a change from
a no-fire counterfactual, it was always negative.
In contrast, the cost per acre of prescribed fire
was always positive. Therefore, the modified
objective function in equation (1) maximizes a
welfare measure that is always negative, given
a stationary prescribed fire policy (Rideout
and Omi 1990). To calculate the discounted
QNW generated by each of the 50,000 sets
of 100-year wildfire simulations, wildfire out-
comes, ŵi,� , for each future year for each fire
output equation were converted from natu-
ral logarithm per-acre predicted values. This

was calculated as Ŵi,� = 313035 × exp(ŵi,� +
0.5s2

i ), where i indexes the simultaneously esti-
mated areal risk (i = 1) and intensity-weighted
risk (i = 2) model estimates, � indexes the fu-
ture year (� = 1, . . . , 100), and the constant is
the total forest area in Volusia County.

The net value change of wildfire was based
on Butry et al.’s (2001) study of Florida’s 1998
wildfire season. Butry et al. (2001) reported
welfare effects of wildfires on timber markets
and on costs of damages to structures, expen-
ditures on suppression, costs of evacuations,
and changes in spending in other sectors. The
point estimate of Volusia County’s timber mar-
ket welfare loss from the 1998 wildfires was
$163 million. Approximately $0.5 million in
welfare losses are attributable to damaged or
destroyed structures in Volusia County.5 The
market value of wildfire suppression services
in 1998 was approximately $42 million for
Volusia County, while the county’s hotel and

5 Applying the PriceWaterhouseCoopers’ estimates of structure
loss and damage (Butry et al. 2001), we calculate that 5.5 house-
equivalents were lost in Volusia county in 1998. With a replacement
value of $77,922/structure, the aggregate market replacement value
of $428,572 produced a total welfare loss of $446,500. We estimated
linear approximations of Volusia County housing supply and de-
mand curves. The position of these curves in price-quantity space
was based on data from the Florida Bureau of Economic and Busi-
ness Research (2002) and two surveys of housing market supply
and demand elasticities. The new construction supply elasticity of
5.0 is based on Blackley (1999, p. 32, in her table 2), and our hous-
ing services demand elasticity estimate of 0.2 is derived from Zabel
(2004, p. 29, his table 2, models 2 and 4).
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tourism sector lost an estimated $20 million in
revenues.

A full computable general equilibrium anal-
ysis would be required to fully quantify the wel-
fare impacts of suppression expenditures and
changes in spending in the tourism and hotel
industries. In lieu of such a prohibitive addition
to this analysis we performed a sensitivity anal-
ysis using Monte Carlo simulations based on
(1) the quantified welfare losses only (timber
and housing, about $164 million), and (2) the
market values of commodities or services lost
(including timber, housing, hotel and tourism
sector revenues, and suppression costs, for a to-
tal of about $251 million) in the 1998 wildfires.
Quantified welfare losses from wildfires in Vo-
lusia County were $1,012/acre (for the wildfire
areal risk model) and $0.56/kW-acres/meter
(for the intensity-weighted risk model). Us-
ing quantified market values, these figures are,
respectively, $1,558/acre and $0.88/kW-acres/
meter for the areal risk and intensity-weighted
risk models.

The cost of prescribed fire varies with the
size of the burn and various operational vari-
ables (Cleaves and Brodie 1990; Bellinger,
Kaiser, and Harrison 1983; González-Cabán
and McKetta 1986; Rideout and Omi 1995).
For example, Cleaves, Martinez, and Haines
(2000) estimated average prescribed burn
costs/acre for nine regions in the United States
and found that the costs ranged from $10.70
to $344.46 per acre, with an average for the
Southeast of $26.30 per acre. We expect that
increasing demand for prescribed fire services
would result in higher per acre costs, given
a fixed supply curve. Factors contributing to
higher prescribed fire costs as larger percent-
ages of a county are treated might include:
(1) an inadequate (inelastic) supply of quali-
fied prescribed fire technicians, (2) higher ex-
penses for treating progressively more com-
plicated land blocks, (3) rising public costs in
terms of health impacts and escape risks, and
(4) higher costs associated with less accessi-
ble and more difficult to treat forest ecosystem
types (e.g., bald cypress [Taxodium distichum]
and water tupelo [Nyssa aquatica]). Although
the supply of qualified technicians is a short-
run problem, the other factors are expected to
worsen in the long run with continued popula-
tion growth. So, we expect increases in prices
of prescribed fire services in both the short and
the long run.

To estimate the elasticity of prescribed
fire service supply with respect to price, we
used 1984–1994 data obtained from Cleaves,

Martinez, and Haines’ (2000) survey of Na-
tional Forests. Data on total forest acres by
National Forest or District were obtained from
the National Forest System.6 We estimated
long run prescribed fire service supply as a
double-log cross-sectional model, expressing
the quantity of acres treated as a function
of prescribed fire price per acre (the sum of
weighted average planning plus project costs
in real 1996 dollars), agricultural sector wages
by state, and National Forest System Region
dummies. The estimated supply function is in-
elastic with respect to prescribed fire price per
acre, with a constant elasticity estimate of 0.54
(standard error of 0.23), significantly different
from zero at 2% and from unity at 5%. The
elasticity of supply with respect to real wages
is also significantly different from zero, at 3%
(elasticity=−1.51), while planning and project
costs and four out of six regional dummies are
significant at 2%.

Using the estimated supply elasticity of 0.54,
we calibrated the prescribed fire supply func-
tion over the average amount of prescribed fire
observed between 1994 and 2001 in Volusia
County. Using the observed average cost of
$25/acre and actual average quantity burned
as points of departure for calibrating prices per
acre for alternative prescribed fire amounts,
prescribed fire prices varied from $11/acre at
5,000 acres per year to $298/acre for 75,000
acres per year.7

The real discount rate was set at 5%; results
were not highly sensitive to the discount rate.
Because small-diameter timber harvests were
held constant and fire suppression resource ef-
ficiency was unchanged over the entire sim-
ulation period, their effects were not directly
explored. While fuel reductions in the form of
both timber harvesting (or thinning) and pre-
scribed burning could make suppression more
cost-effective, their total effects on suppression
costs are uncertain (Donovan and Rideout
2003). Thus, their effects on subsequent fire
suppression costs were also assumed constant.
This implies that the change in welfare in the
theoretical model (equation (1)) results exclu-
sively from changes in prescribed fire costs and
net value change (net damages from wildfire).

6 Data were obtained from http://www.fs.fed.us/land/staff/lar/
LAR94/lartab3.htm or directly from District or National Forest
personnel.

7 A lower bound of $10.70 per acre, the minimum observed by
Cleaves, Martinez, and Haines (2000), was impose on prescribed
fire price. Hence, amounts above 7,700 acres per year had prices
higher than $10.70 at the base case elasticity of supply with respect
to prescribed fire price.
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For each simulation, we essentially estimated
one curve in the envelope of C+NVC curves
described by Donovan and Rideout (2003).

Data

The Florida Division of Forestry provided de-
tailed records for all wildland fires on non-
federal lands reported to the Division of
Forestry between 1981 and 2001. These records
included the fire’s county of origin, date first re-
ported, dominant fuel type, flame length, and
total area burned. Fires whose dominant fuel
type was “grassy” were dropped, as our inter-
est was in forest fires. Data on wildland fires on
federal lands were obtained from the USDA
Forest Service, U.S. Fish and Wildlife Ser-
vice, and the U.S. Park Service. Because wild-
fire data were unavailable for the Department
of Defense (DOD) and NASA lands, coun-
ties containing DOD or NASA lands were
dropped from the analysis.

The wildfire intensity-weighted risk variable
was calculated from observations of the aver-
age flame length for each fire.8 For the 3% of
fires lacking observations on flame length, we
applied a weighted average of acres of fires
with different flame lengths for each county
in each. Next, we summed (for each county)
the acres of fire for each flame length cate-
gory9 and calculated the fireline intensity with
Byram’s (1959) equation, FI = 259.833(L)2.174,
where FI is fireline intensity (kW/m) and L is
flame length in meters. The annual intensity-
weighted risk was derived by summing for each
county the product of the annual number of
acres burned in each intensity class times the
average intensity for that class divided by the
county’s total forest area.

Data on silvicultural burn permits covering
all ownerships were obtained from the Florida
Division of Forestry. The permit data base con-
sists of one observation for each permit and in-
cludes the date, purpose, total permitted burn
area, and the location (township, range, and
cadastral section) of at least one portion of
the treated area. We assumed all burns were
completed as described in the permit database.
Burns for agricultural and rangeland purposes
were dropped. Although permit data for some

8 The Florida Division of Florida’s flame length categories were
0–2 feet, 3–4 feet, 5–8 feet, 9–10 feet, or greater than 10 feet in
height.

9 Average flame length for each category and 15 feet as the
average for the greater than 10-feet category were used for the
calculations.

counties began in 1989, full statewide cover-
age was not available until 1993. Therefore,
we used 1993 as the first valid start year. Ta-
ble 1 provides summary statistics for wildland
fires and prescribed burn permits for Volusia
County and all of Florida for 1993–2001.

Data on annual softwood and hardwood
pulpwood harvests by county were obtained
from the USDA Forest Service Forest Inven-
tory and Analysis unit in Asheville, NC. Since
pulpwood removal data were only available
for the calendar year and harvests occur both
before and after the start of the fire year, we
reduced potential simultaneity bias by includ-
ing only lagged pulpwood variables in the re-
gressions. Data for the Niño-3 SST anomaly
and the NAO (our proxies for annual varia-
tion in fire climate) were obtained from the
National Oceanic and Atmospheric Admin-
istration (2003a, b). Data on annual housing
counts were provided by the Florida Bureau
of Economics and Business Research (2002).

Results and Discussion

Wildfire Production Functions

The parameter estimates for the full specifica-
tions of both the areal and intensity-weighted
risk functions (tables 2 and 3) reveal that both
models are broadly significant, with most vari-
ables significant at 1% and all with signs in
the expected directions. Moran’s I tests de-
tected no statistically significant spatial auto-
correlation in either model.10 The parsimo-
nious versions of these two models used in the
simulations are also shown in tables 2 and 3.
Compared to previous literature, our results
show that prescribed fire produces a larger risk
reduction for a longer time and that prescribed
burning significantly reduces both areal risk
and intensity-weighted risk for at least three
years.

With a few minor exceptions, the parameter
estimates in the intensity-weighted risk model
are larger in absolute terms than those esti-
mated in the areal risk model. Notably, the
effectiveness of prescribed fire is greater in

10 We constructed a row-standardized inverse distance spatial
weights matrix (275 × 275) of Florida counties by fire year
(October–September). A county could only be a neighbor of an-
other if both had an estimated residual in the same year. For the
fully specified intensity-weighted risk model, the Moran’s I is 0.004
with a variance of 0.00029, producing a Z-score of 0.450, which
results in a (two-sided test) probability of 0.653 of spatial auto-
correlation. For the full specification of the areal risk model, the
Moran’s I is 0.019 with a variance of 0.00026, producing a Z-score
of 1.402 and a 0.160 probability of autocorrelation.



Mercer et al. Evaluating Alternative Prescribed Burning Policies 71

Table 2. Model Parameter Estimates of Fully Specified and Parsimonious Forms of Intensity-
Weighted Risk Functions

Full Model Parsimonious Model

Explanatory Variables Parameter Z-Value Parameter Z-Value

ln(Prescribed Burn Area/Forest Area) −0.323∗∗∗ −2.51 −0.388∗∗∗ −3.29
ln(Prescribed Burn Areat−1 /Forest Area) −0.161 −0.096 — —
ln(Prescribed Burn Areat−2 /Forest Area) −0.395∗∗∗ −2.44 −0.513∗∗∗ −3.13
ln(Wildfire Areat−1 /Forest Area) −0.333∗∗∗ −4.19 −0.314∗∗∗ −4.64
ln(Wildfire Areat−2 /Forest Area) −0.276∗∗∗ −3.50 −0.308∗∗∗ −4.53
ln(Wildfire Areat−3 /Forest Area) −0.217∗∗∗ −2.56 −0.292∗∗∗ −3.95
ln(Wildfire Areat−4 /Forest Area) −0.302∗∗∗ −3.11 −0.318∗∗∗ −3.95
ln(Wildfire Areat−5 /Forest Area) −0.152∗ −1.56 −0.171∗∗ −2.05
ln(Wildfire Areat−6 /Forest Area) −0.266∗∗∗ −2.92 −0.309∗∗∗ −4.11
ln(Wildfire Areat−7 /Forest Area) 0.816 0.84 — —
ln(Wildfire Areat−8 /Forest Area) 0.174∗ 1.67 — —
ln(Wildfire Areat−9 /Forest Area) −0.081 −0.84 — —
ln(Wildfire Areat−10 /Forest Area) −0.239∗∗∗ −2.70 −0.191∗∗∗ −2.62
ln(Wildfire Areat−11 /Forest Area) 0.004 0.04 — —
ln(Wildfire Areat−12 /Forest Area) −0.001 −0.01 — —
ln(Pulpwood Harvestt−1 /Forest Area) 0.483∗∗ 1.81 — —
ln(Pulpwood Harvestt−2 /Forest Area) 0.075 0.27 — —
ln(Pulpwood Harvestt−3 /Forest Area) −0.813∗∗∗ −3.25 −0.932∗∗∗ −5.65
ln(Housing Density /Forest Area) −0.342 −0.17 — —
ENSO −0.633∗∗∗ −3.20 −0.703∗∗∗ −4.99
NAO 1.700∗∗∗ 4.47 1.256∗∗∗ 3.88
1998 dummy 4.291∗∗∗ 10.10 3.986∗∗∗ 12.06

Number of cross sections 48 48
Number of years 7 7
Total panel observations 275 285
Wald chi2 2,681 (prob > 1,673 (prob >

Chi2 = 0.000) Chi2 = 0.000)
Log likelihood −334.2644 −382.1589

Notes: Single (∗), double (∗∗), and triple (∗∗∗) asterisk denote significance at 0.10, 0.05, and 0.01 levels, respectively. The dependent variable is the ratio of

the log of sum of number acres burned at each intensity level times the intensity level per county per year relative to total forest area. Equation estimates

reported here exclude estimates of 48 county dummies.

the intensity model than in the simple area
model, implying that prescribed fire reduces
both wildfire area and wildfire intensity. In
the intensity-weighted risk regression, each
percentage increase in prescribed burn area
(averaged over three years) reduces wildfire
intensity-weighted risk by 0.27% compared to
0.23% for the areal risk model. In the short-
run (0 to 2 years), a 1% increase in prescribed
burning acreage reduces the areal risk of wild-
fire by 0.65% and the intensity-weighted risk
by 0.71%.

Our results also suggest that the impacts of
prescribed burning and past wildfire are simi-
lar, at least for the first few years. The shorter
time series for prescribed burning only allowed
identification of the effects of the current year
and two years of lagged prescribed fire, but
this period is consistent with the period over
which prescribed fire was found to reduce tree
mortality from wildfire (Brockway and Outcalt
2000; Outcalt and Wade 2004). Our results

show that past wildfire continues to reduce the
risk of current wildfire up to ten or eleven years
later.

Prescribed Burn Simulations

Results from the 100-year simulations of wild-
fire under a range of prescribed burn policies
for Volusia County are presented in figures 1
(the intensity-weighted risk model) and 2 (the
areal risk model). Each figure depicts both
the market value and QNW economic im-
pacts associated with a range of stationary
prescribed burn policies. The welfare values
are based on predicted impacts on the timber
and housing sectors, while the market value
curves use market values for the timber and
housing sectors, suppression costs, and changes
in expenditures in the travel and hotel sec-
tor. The models perform as expected, with in-
creasing amounts of prescribed fire leading to
lower area burned and intensity-weighted area
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Table 3. Model Parameter Estimates of Fully Specified and Parsimonious Forms of Areal Risk
Functions

Full Model Parsimonious Model

Explanatory Variables Parameter Z-Value Parameter Z-Value

ln(Prescribed Burn Area/Forest Area) −0.262∗∗∗ −3.17 −0.284∗∗∗ −3.60
ln(Prescribed Burn Areat−1 /Forest Area) −0.051 −0.46 — —
ln(Prescribed Burn Areat−2 /Forest Area) −0.373∗∗∗ −3.32 −0.432∗∗∗ −3.61
ln(Wildfire Areat−1 /Forest Area) −0.266∗∗∗ −4.73 −0.209∗∗∗ −4.28
ln(Wildfire Areat−2 /Forest Area) −0.239∗∗∗ −4.42 −0.229∗∗∗ −4.61
ln(Wildfire Areat−3 /Forest Area) −0.186∗∗∗ −3.62 −0.176∗∗∗ −3.34
ln(Wildfire Areat−4 /Forest Area) −0.238∗∗∗ −3.77 −0.255∗∗∗ −4.49
ln(Wildfire Areat−5 /Forest Area) −0.193∗∗∗ −3.12 −0.223∗∗∗ −3.87
ln(Wildfire Areat−6 /Forest Area) −0.160∗∗∗ −2.78 −0.164∗∗∗ −3.21
ln(Wildfire Areat−7 /Forest Area) −0.013 −0.21 — —
ln(Wildfire Areat−8 /Forest Area) 0.066 0.99 — —
ln(Wildfire Areat−9 /Forest Area) −0.149∗∗ −2.25 −0.153∗∗ −2.62
ln(Wildfire Areat−10 /Forest Area) −0.197∗∗∗ −3.19 −0.149∗∗∗ −2.91
ln(Wildfire Areat−11 /Forest Area) −0.104∗ −1.61 — —
ln(Wildfire Areat−12 /Forest Area) −0.054 −0.93 — —
ln(Pulpwood Harvestt−1 /Forest Area) 0.421∗∗ 2.29 — —
ln(Pulpwood Harvestt−2 /Forest Area) 0.376∗ 1.89 — —
ln(Pulpwood Harvestt−3 /Forest Area) −0.509∗∗∗ −2.97 −0.470∗∗∗ −3.77
ln(Housing Density /Forest Area) 0.834 0.59 — —
ENSO −0.312∗∗∗ −2.51 −0.262∗∗∗ −2.67
NAO 0.934∗∗∗ 3.81 0.906∗∗∗ 4.10
1998 dummy 2.268∗∗∗ 8.22 2.310∗∗∗ 10.09

Number of cross sections 48 48
Number of years 7 7
Total panel observations 275 285
Wald chi2 2,960 (prob > 1,645 (prob >

Chi2 = 0.000) Chi2 = 0.000)
Log likelihood −228.0352 −276.6049

Notes: Single (∗), double (∗∗), and triple (∗∗∗) asterisk denote significance at 0.10, 0.05, and 0.01 levels, respectively. Dependent variables are natural logs of

each county’s annual total areal extent (acres) of wildfire (areal risk model) and the natural logs of sum of area burned (acres) at each intensity level times

the intensity level per county per year. Equation estimates reported here exclude estimates of 48 county dummies.

burned and lower overall net economic losses
and costs. Greater amounts of prescribed fire
lead to rising per-unit prescribed fire costs and
marginally smaller gains in damages averted.
Together these produce the inverse-U shaped
QNW curves in figures 1 and 2.

The intensity-weighted risk model predicts
that an annual rate of prescribed fire of 41,000
acres (welfare analysis) or 48,000 acres (mar-
ket value analysis) would maximize discounted
net value change minus costs.11 The additional

11 The optimal amount of fuel treatment for a county may also
depend on how the treatments are allocated spatially. Although
some anecdotal evidence supports this, empirical evidence is not
yet available to validate this claim. However, if it turns out to
be true, our approach may underestimate the damage-cost reduc-
tions of prescribed fire, suggesting that higher rates of prescribed
fire may be optimal. Nevertheless, we do not expect that explicit
spatial analysis would substantially affect our results on optimal
levels of aggregate treatments across a county. In this paper, we
assume that the actions of managers in the historical data were

7,000 acres treated in the market analysis re-
sults from accounting for expenditures on fire
suppression and wildfire impacts on the hotel
and tourism sector. Comparing figures 1 and
2, the annual prescribed fire amount that max-
imizes QNW is about 33% lower in the areal
risk model than in the intensity-weighted risk
model, regardless of which damage measures
are used. Although the stochastic dominance
analyses fail to identify specific policy solu-
tions, they do provide a range of treatments
that dominate all other policies tested. Using
the intensity-weighted risk model and welfare

optimal, in the sense that prospective areas to burn were identified
spatially and then prioritized (burned first) with an (constrained)
economic optimization model in mind. When the budget or insti-
tutional constraints are removed, we expect landowners to use the
same criteria for locating treatments on the landscape. Consistent
with our log–log model parameter estimates, the marginal effect of
each additional acre prescribed burned declines with the absolute
level of prescribed burn area in the county.
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Figure 1. The simulated schedule of input–output combinations derived from the intensity-
weighted risk model; amounts of prescribed burning yielding the maximum of net value change
minus cost (symbols shaded black) are 41,000 acres/year for the QNW analysis and 48,000
acres/year for the market value analysis

analysis (figure 1), prescribed fire treatments
between 37,000 and 43,000 acres per year
dominate all other prescriptions by TSD.
Using the market value analysis, including
the hotel and tourism sector and suppression
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Figure 2. The simulated schedule of input–output combinations derived from the areal risk
model; amounts of prescribed burning yielding the maximum of net value change minus cost
(symbols shaded black) are 17,000 acres/year for the QNW analysis and 19,000 acres/year for
the market value analysis

costs, the equivalent TSD range is 45,000 to
51,000 acres/year. For the areal risk model,
prescribed fire treatments between 15,000 and
19,000 acres per year (welfare analysis) and
17,000 and 21,000 acres/year (market analysis)
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dominate all other prescriptions by TSD.
Both the discounted QNW and market value
analyses produce maxima in the middle of the
ranges identified by the stochastic dominance
analysis.

The values for economic damages from wild-
fire in our Monte Carlo simulations are point
estimates that do not vary. Therefore, we also
evaluated how the prescribed fire level with
the maximum QNW varies across a range
of assumed per-unit net value changes. We
varied the net value change from $0.28/kW-
acres/meter to $1.12/kW-acres/meter, keeping
wildfire production parameters constant while
including random equation errors and Niño-3
SST and NAO values. The results presented
in figure 3 show that reducing the net value
change from wildfire by half lowers the pre-
scribed fire amount yielding the highest ex-
pected value by about 27%. Doubling the net
value change per unit increases the prescribed
fire amount with the highest expected value by
about 34%.

Between 1994 and 2001, landowners in Volu-
sia County requested permits to prescribe burn
an average of 13,040 acres per year, or about
4.17% of all forested acres (table 1). Our re-
sults suggest that increasing the amount of pre-
scribed burning in Volusia County would re-
duce both the areal risk and intensity-weighted
risk of subsequent wildfires and associated
damages. Because the intensity of a fire is
strongly correlated with the damages observed
(Kennard 2004) and prescribed burning re-
duces wildfire intensity in addition to area,
using a strictly areal approach to modeling
wildfire production will underestimate the true
impact of prescribed fire on subsequent wild-
fire damages and hence underestimate the
“optimal” rate of prescribed fire for a land-
scape. For example, the areal risk model sug-
gests that the current rate of prescribed burn-
ing in Volusia County is close to the amount
that maximizes long-run discounted QNW
(17,000 acres per year or 4.8% of the forest
area). Using the intensity-weighted risk model,
however, the preferred rate of prescribed fire
is about 214 percent higher than current rates,
41,000 acres per year, or 13% of the county’s
forest.

Conclusions

Although the economic theory of wildfire man-
agement has been the subject of considerable
study, empirical economic analysis of wildfire

is still in its infancy. Using panel data from the
State of Florida from 1994 to 2001, we extend
previous wildfire production function analyses
by estimating a wildfire risk model that incor-
porates both the areal extent and the inten-
sity of wildfire in a new measure of wildfire
output, intensity-weighted risk. We then de-
velop an approach for incorporating wildfire
production functions into simulation models
that identify the rate of prescribed burning that
maximizes a net welfare criterion.

The amount of prescribed fire that mini-
mizes the net economic losses from wildfire
depends strongly on the chosen measure of
damages from wildfire. Because net economic
damages from fires are related both to the
size and the intensity of the fires, ignoring
intensity and relying on a strictly areal risk
expression of wildfire output may lead to an
underapplication of prescribed fire on a land-
scape. This finding is supported by our results
from Volusia County, Florida, where account-
ing for wildfire intensity resulted in a one-third
increase in the amount of prescribed fire re-
quired to minimize aggregate economic im-
pacts from wildfire, compared to a strictly areal
risk alternative.

This research represents an initial step
toward developing cost-effective wildfire man-
agement programs through improved under-
standing of the economic tradeoffs between
fuels management and wildfire suppression ef-
forts. However, before our approach is applied
broadly, models should be estimated and eval-
uated for the entire range of ecosystems where
prescribed fire is being considered. For exam-
ple, fuel treatments in dry, slow growing pine
forests in the western United States may pro-
duce very different wildfire risk reductions,
both in absolute amounts and in terms of the
length of their effective duration.

We also caution that our approach is scale
dependent. Findings at the county level may
not hold for specific land holdings within a
county. As such, our research represents a
strategic approach for wildfire policy and man-
agement, helping policy makers determine ap-
propriate budgets, programs, and incentives
for fuels management to reduce the soci-
etal impacts of wildfires. Additional work will
be needed to determine how such resources
should be applied tactically and strategically.

Despite some of these potential shortcom-
ings, this research advances economic the-
ory through empirical analysis. Our results
document a new understanding of how wild-
fire should be measured when evaluating the
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Figure 3. Simulated schedule of prescribed fire policies yielding the highest expected values,
identified by varying assumed wildfire damages per unit, using the intensity-weighted risk model
and quasi-net welfare losses from wildfire

efficacy of wildfire management inputs. Our
results suggest that wildfire prevention and
management activities have an effect on dam-
ages that exceed those reflected in simple mea-
sures of area burned. Additionally, our find-
ing that the national supply of prescribed fire
services responds inelastically to price should
be a warning that the cost of prescribed fire
services may increase rapidly with expanded
prescribed fire use in the United States. Our
estimated prescribed fire supply function im-
plies that if programs like the President’s
Healthy Forests Initiative succeed in increas-
ing contracts for prescribed fire on public lands,
private landowners may face higher costs for
similar services. Therefore, an unintended con-
sequence of expanded use of fuel treatments
on public lands may be a reduction in pre-
scribed fire on private lands.

Our research suggests the need for addi-
tional research in several areas. First, a bet-
ter understanding of the supply of prescribed
fire services would allow more realistic simu-
lations of nonmarginal changes in prescribed
fire inputs. Second, identification of the en-
velope of economically optimal levels of any
particular input needs to account for substi-
tutability across inputs. Mechanical fuel treat-
ments may interact with prescribed burning,
such that the “best” prescribed fire levels iden-
tified without such interactions may differ from
those found when other approaches are in-
cluded in estimating optimal combinations of

treatments. Similar cautions exist with respect
to fire suppression. It is possible that fire sup-
pression resource efficiencies may be changed
by fuels management, but data limitations pre-
cluded identification of such changes. Finally,
both wildfire and prescribed fire provide a suite
of public and private goods and bads that go
beyond the economic damages and market
prices of direct inputs described in this study.
Although considerable research is needed to
quantify the values of these nonmarket im-
pacts of wildfire, including these other values
in optimization models could lead to a more
accurate assessment of public and private pol-
icy choices for wildfire management.

[Received June 2004;
accepted April 2006.]
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